Weak gravitational shear and flexion with polar shapelets

نویسندگان

  • Richard Massey
  • Barnaby Rowe
  • Alexandre Refregier
  • David J. Bacon
  • Joel Bergé
چکیده

We derive expressions, in terms of ‘polar shapelets’, for the image distortion operations associated with weak gravitational lensing. Shear causes galaxy shapes to become elongated, and is sensitive to the second derivative of the projected gravitational potential along their line of sight; flexion bends galaxy shapes into arcs, and is sensitive to the third derivative. Polar shapelets provide a natural representation, in which both shear and flexion transformations are compact. Through this tool, we understand progress in several weak lensing methods. We then exploit various symmetries of shapelets to construct a range of shear estimators with useful properties. Through an analogous investigation, we also explore several flexion estimators. In particular, some of the estimators can be measured simultaneously and independently for every galaxy, and will provide unique checks for systematics in future weak lensing analyses. Using simulated images from the Shear TEsting Programme, we show that we can recover input shears with no significant bias. A complete software package to parametrize astronomical images in terms of polar shapelets, and to perform a full weak lensing analysis, is available on the Internet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shapelets: a New Method to Measure Galaxy Shapes

We present a new approach to measure the shapes of galaxies, a fundamental task in observational astronomy. This approach is based on the decomposition of a galaxy image into a series of orthogonal basis functions, or ‘shapelets’. Our choice of basis functions, namely the Gauss-Hermite series, has a number of remarkable properties under distortions, convolutions and noise, which makes them part...

متن کامل

Gravitational Shear, Flexion and Strong Lensing

We present a gravitational lensing analysis of the galaxy cluster Abell 1689, incorporating measurements of the weak shear, flexion, and strong lensing induced in background galaxies. This is the first time that a shapelet technique has been used to reconstruct the distribution of mass in this cluster, and the first time that a flexion signal has been measured using cluster members as lenses. F...

متن کامل

Shapelets: II. A Method for Weak Lensing Measurements

Weak gravitational lensing provides a unique method to directly measure the distribution of mass in the universe. Because the distortions induced by lensing in the shape of background galaxies are small, the measurement of weak lensing requires high precision. Here, we present a new method for obtaining reliable weak shear measurements. It is based on the Shapelet basis function formalism of Re...

متن کامل

Multipole Formulae for Gravitational Lensing Shear and Flexion

The gravitational lensing equations for convergence, potential, shear, and flexion are simple in polar coordinates and separate under a multipole expansion once the shear and flexion spinors are rotated into a “tangential” basis. We use this to investigate whether the useful monopole aperture-mass shear formulae generalize to all multipoles and to flexions. We re-derive the result of Schneider ...

متن کامل

Shapelets Multiple Multipole Shear Measurement

The measurement of weak gravitational lensing is currently limited to a precision of ∼10% by instabilities in galaxy shape measurement techniques and uncertainties in their calibration. The potential of large, on-going and future cosmic shear surveys will only be realised with the development of more accurate image analysis methods. We present a description of several possible shear measurement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006